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VIBRATION OF MULTI-SPAN NON-UNIFORM
BEAMS UNDER MOVING LOADS BY USING
MODIFIED BEAM VIBRATION FUNCTIONS
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Based on Hamilton’s principle, the vibration of a multi-span non-uniform beam
subjected to a moving load is analysed by using modified beam vibration functions as the
assumed modes. The modified beam vibration functions satisfy the zero deflection
conditions at all the intermediate point supports as well as the boundary conditions at the
two ends of the beam. Numerical results are presented for both uniform and non-uniform
beams under moving loads of various velocities. Examples show that this method converges
very quickly and good results are obtained.
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1. INTRODUCTION

There are many engineering structures such as bridges, car-parks and jetties which are
subjected to moving loads. The vibration of structures due to moving loads has been
analysed extensively in recent years. Many methods have been presented for its prediction,
but only the notable ones are cited here. Fryba [1] presented in his monograph various
analytical solutions for vibration problems of simple and continuous beams under moving
loads. The modal superposition method was later employed by Hayashikawa and
Watanabe [2] and Wu and Dai [3] to analyse similar problems. However, the former [2]
used the ‘‘eigen stiffness matrix method’’, while the latter [3] used the transfer matrix
method for the initial evaluation of natural frequencies and vibration modes. More
recently Cai et al. [4] applied the U-transformation and modal superposition method and
presented an exact solution for the dynamic response of an infinite uniform beam resting
on periodic roller supports and subjected to a moving load.

The finite element method has also been used. The governing partial differential
equations are first changed into a series of ordinary differential equations by spatial
discretization. Then either modal superposition or step-by-step integration in time domain
is applied to solve these equations [5–11]. Later Henchi et al. [12] used exact dynamic
stiffness elements under the framework of finite element approximation to study the
dynamic response of multi-span structures under a convoy of moving loads.

Recently Lee [13] utilized Hamilton’s principle to solve the dynamic response of a beam
with intermediate point constraints subjected to a moving load. He used the vibration
modes of a simply-supported beam as the assumed modes. As these assumed modes do
not satisfy the zero deflection conditions at the intermediate point constraints, he modelled
the intermediate point constraints as very stiff linear springs and inevitably some errors
were involved. In this paper, the modified beam vibration functions are used as the
assumed modes. As all the zero deflection conditions at the intermediate point supports
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as well as the boundary conditions at the two ends of the beam are satisfied, quicker
convergence and more accurate results can be expected.

2. ASSUMPTIONS AND FORMULATIONS

A continuous linear elastic Bernoulli–Euler beam with (Q+1) point supports subjected
to N moving loads is shown in Figure 1.

The loads {Ps , s=1, 2, . . . , N} move as a group at a prescribed velocity v(t) along the
axial direction from left to right. The locations of the loads and the vibrations of the beam

Figure 1. A continuous beam with (Q−1) intermediate point supports under N moving loads.

Figure 2. Deflection under the moving load at v=17·3 m/s (a=0·111): ——, present; qqq, reference [13].
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Figure 3. Deflection under the moving load at v=77·8 m/s (a=0·5): ——, present; qqqq, reference [13].

are denoted by {xps (t), s=1, 2, . . . , N} and w(x, t), respectively. The kinetic energy V� ,
the bending energy U� and the work done by external force W� are, respectively,

V� = 1
2 g

L

0

rA(x)$1w(x, t)
1t %

2

dx, (1)

U� = 1
2 g

L

0

EI(x)$12w(x, t)
1x2 %

2

dx, (2)

W� = s
N

s=1

Psw[xps (t), t][u(t− t1
s )− u(t− t2

s )], (3)

where r is the density, E is the Young’s modulus, A(x) is the area, I(x) is the moment
of inertia of the cross-section, t1

s and t2
s are the times when the load Ps just comes onto

and leaves the beam respectively, and u(t) is the unit step function defined as

u(t)=61,
0,

te 0
tQ 0

. (4)

By separation of variables, the vibration of the beam w(x, t) can be expressed as

w(x, t)= s
n

i=1

qi (t)Xi (x), (5)
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where {Xi (x), i=1, 2, . . . , n} are the assumed vibration modes which satisfy the boundary
conditions a priori and {qi (t), i=1, 2, . . . , n} are generalized co-ordinates. The velocity
of vibration and the curvature of the beam are, respectively,

1w(x, t)
1t

= s
n

i=1

q̇i (t)Xi (x), (6)

12w(x, t)
1x2 = s

n

i=1

qi (t)X0i (x). (7)

Substituting equations (6), (7) and (5) into equations (1), (2) and (3), respectively, one
obtains

V� = 1
2 s

n

i=1

s
n

j=1 g
L

0

rA(x)q̇i (t)Xi (x)q̇j (t)Xj (x) dx= 1
2 s

n

i=1

s
n

j=1

q̇i (t)mijq̇j (t), (8)

U� = 1
2 s

n

i=1

s
n

j=1 g
L

0

EI(x)qi (t)X0i (x)qj (t)X0j (x) dx= 1
2 s

n

i=1

s
n

j=1

qi (t)kijqj (t), (9)

W� = s
N

s=1

s
n

i=1

Psqi (t)Xi [xps (t)][u(t− t1
s )− u(t− t2

s )], (10)

Figure 4. Deflection under the moving load at v=171 m/s (a=1·1): ——, present; qqqq, reference [13].
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Figure 5. Deflection under the moving load at v=233 m/s (a=1·5): ——, present; qqqq, reference [13].

where

mij =g
L

0

rA(x)Xi (x)Xj (x) dx, (11)

kij =g
L

0

EI(x)X0i (x)X0j (x) dx, (12)

are generalized mass and stiffness matrices, respectively.
The Lagrangian function L� for the beam is V� −(U� −W� ) where (U� −W� ) is the total

potential energy, and the Euler-Lagrange equation is, therefore,

d
dt 01L�

1q̇i1−
1L�
1qi

=0. (13)

Figure 6. A three-span continuous stepped beam under a single moving load.
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Figure 7. Deflections at mid-span positions: ——, present—span 1; –––, present—span 2; ×, reference
[16]—span 1; +, reference [16]—span 2; w, reference [2]—span 1; q, reference [2]—span 2.

Substituting equations (8)–(10) into equation (13), one has

s
n

j=1

mijq̈j (t)+ s
n

j=1

kijqj (t)= s
N

s=1

PsXi [xps (t)][u(t− t1
s )− u(t− t2

s )] i=1, 2, . . . , n.

(14)

Once the assumed vibration modes Xi (x) are chosen, mij and kij can be easily obtained from
numerical integration using Gaussian quadrature.

3. ASSUMED VIBRATION MODES

The assumed vibration modes essentially comprise the vibration modes of a single span
beam, modified by cubic spline expressions. They can be written as

Xi (x)=X� i (x)+X	 i (x), (15)

Figure 8. A three-span continuous haunched beam under a single moving load: (a) elevation; (b) section AA.
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Figure 9. Deflections at mid-span positions: ——, present—span 1; –––, present—span 2; · · · · , present—span
3; ×, reference [16]—span 1; w, reference [16]—span 2; q, reference [16]—span 3.

where {X� i (x), i=1, 2, . . . , n} are the vibration modes of a hypothetical prismatic beam
of total length L with the same end supports but without the intermediate supports, and
{X	 i (x), i=1, 2, . . . , n} are the augmenting cubic spline expressions which are so chosen
that each Xi (x) satisfies the boundary conditions at the two ends and the zero deflection
conditions at the intermediate point supports. The vibration modes X� i (x) are Fourier sine
series for a simply supported beam, and those for other end conditions are given in
reference [14]. Note that cubic spline expressions are chosen instead of a higher order
polynomial so that convergence is better.

For example, consider a continuous beam with simply-supported ends at x0 and xQ , and
with intermediate point supports at {x= xj , j=1, 2, . . . , Q−1}. The boundary
conditions at the ends can be expressed in the form

Xi (x0)=Xi (xQ )=X0i (x0)=X0i (xQ )=0, (16)

which implies

X	 i (x0)=X	 i (xQ )=X	 0i (x0)=X	 0i (xQ )=0. (17)

For the intermediate point supports, one has

Xi (xj )=X� i (xj )+X	 i (xj )=0, j=1, 2, . . . , Q−1, (18)

and hence

X	 i (xj )=−X� i (xj ), j=1, 2, . . . , Q−1. (19)
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If the following coefficients are introduced

yij =X	 i (xj )=−X� i (xj ), uij =X	 'i (xj ), i=1, 2, . . . , n; j=0, 1, . . . , Q, (20, 21)

the augmenting cubic spline expression X	 i (x) can be written as

X	 i (x)=H1j (jj )yi(j−1) +H2j (jj )ui(j−1) +H3j (jj )yij +H4j (jj )uij , x$ [xj−1, xj ],

j=1, 2, . . . , Q (22)

where the Hermitian polynomials are given by

H1j (jj )=1−3j2
j +2j3

j , H2j (jj )= ljjj (1− jj )2, (23, 24)

H3j (jj )=3j2
j −2j3

j , H4j (jj )= ljj2
j (jj −1), (25, 26)

jj =(x− xj−1)/lj , lj = xj − xj−1, j=1, 2, . . . , Q. (27, 28)

Note that the coefficients yij are known from the vibration modes X� i (x) but uij are yet to
be determined. The process is similar to interpolation by spline curves. Continuity of the
second derivative at the intermediate support points then gives

X	 0i (xj −0)=X	 0i (xj +0), (29)

Figure 10. A three-span continuous bridge of parabolic soffit under a moving vehicle of four axles: (a)
elevation; (b) section BB.
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Figure 11. Deflections at mid-span positions: ——, present—span 1; –––, present—span 2; · · · · ,
present—span 3; ×, reference [16]—span 1; w, reference [16]—span 2; q, reference [16]—span 3.

and hence,

lj+1ui(j−1) +2(lj + lj+1)uij + ljui(j+1) =30lj+1

lj
(yij − yi(j−1))+

lj
lj+1

(yi(j+1) − yij )1,
j=1, 2, . . . , Q−1. (30)

At the two ends of the beam, the boundary conditions are

X	 0i (x0)=X	 0i (xQ )=0, (31)

which can be expressed as

2ui0 + ui1 =3
yi1 − yi0

l1
, ui(Q−1) +2uiQ =3

yiQ − yi(Q−1)

lQ
. (32, 33)

Equations (30), (32) and (33) can be expressed in matrix form as

2 a0 0 · · · 0 0 0 ui0 Bi0

b1 2 a1 · · · 0 0 0 ui1 Bi1

0 b2 2 · · · 0 0 0 ui2 Bi2G
G

G

G

G
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G
G

G

G

G
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G
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J

j
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G

G

G

F

f

h
G

G

G

G

J

j

· · · · · · · · · · · · · · · · · · · · · ···
= ···

,
(34)

0 0 0 · · · bQ−1 2 aQ−1 ui(Q−1) Bi(Q−1)

0 0 0 · · · 0 bQ 2 uiQ BiQ
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in which the first and the last rows represent the boundary conditions at the ends while
the remaining ones stand for the continuity conditions at the intermediate point supports,
and

aj =
lj

lj + lj+1
, bj =

lj+1

lj + lj+1
, Bij =

3
lj + lj+1 0yij − yi(j−1)

lj
lj+1 +

yi(j+1) − yij

lj+1
lj1,

j=1, 2, . . . , Q−1, (35–37)

a0 =1, Bi0 =3
yi1 − yi0

l1
, bQ =1, BiQ =3

yiQ − yi(Q−1)

lQ
. (38–41)

Solving equation (34) gives the undetermined coefficients {uij , j=0, 1, . . . , Q} and hence
the augmenting spline expression X	 i (x).

If the boundary condition at the end is different, the above procedures should be
modified, and details are given in Appendix B.

After the undetermined coefficients of the augmenting spline expressions have been
found, the modified beam vibration functions defined by equation (15) are substituted into
equations (11) and (12) to form the generalized mass and stiffness matrices. Equation (14)
can then be solved by the Wilson-u method [15].

4. RESULTS AND SIMULATIONS

A number of numerical examples are presented to demonstrate the versatility, accuracy
and efficiency of the present method. The present results are compared with either
published results where applicable or results obtained using finite element method. Good
agreement is achieved. In the following examples, note that x is the distance between the
first moving load and the left end of the beam unless otherwise stated.

4.1.  1:   -     

  [13]
A symmetrical two-span continuous prismatic beam with simply-supported ends is

considered. The cross-sectional area A and the density r are, respectively, 1·146×10−3

m2 and 7700 kg/m3. The total length L is 1 m and Young’s modulus E is 207 000 MPa.
Following the convention of Lee [13], the prescribed axial velocity of the moving load is
defined by a non-dimensional parameter given by a= pv/Lv1 where v is the axial velocity
of the moving load and v1, defined as (p/L)2zEI/rA , has a value of 488·7 rad/s. The
deflection under the moving load w is normalized by the deflection D (D=PL3/48EI).

The problem was solved with 12 terms of modified beam vibration functions and 200
equal time steps. Four axial velocities were investigated, i.e., a=0·111, a=0·5, a=1·1
and a=1·5. The normalized deflections under the moving load are shown in Figures 2–5
and compared with those given in reference [13]. Good agreement was observed. It is noted
that, in the present method, the zero deflection conditions at the intermediate point
supports are satisfied strictly.

4.2.  2:  -       

 [2]
The three-span continuous stepped beam under a single moving load, as shown in

Figure 6, was solved by the present method using 12 terms and 240 equal time steps. The
moving point load P is 9·8 kN and the total length L is 60 m. The beam has a constant
mass per unit length rA of 1000 kg/m but the central span has double the flexural rigidity
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of the side span EI which is 1·96×106 kNm2. The fundamental natural circular frequency
v1 of the beam is 38·98 rad/s. The speed parameter a defined by a= v(rA/EIv2

1)1/4 is taken
to be 0·144. In order to demonstrate the dynamic response, the history curves for deflections
at the centres of the first and second spans are shown in Figure 7, and compared to results
from the finite element method [16] using 60 beam elements and 240 equal time steps, and
those from reference [2]. Very good agreement is observed between the present results and
those obtained from finite element methods, although the continuity of bending moment at
the section of abrupt change in EI is not satisfied. It illustrates that the present method is
also applicable to stepped beams. Some discrepancies are, however, noticed between those
from reference [2] and the rest, but the peak values of all three methods do agree with one
another.

4.3.  3:  -      

 

Figure 8 shows a three-span continuous haunched beam under a single moving load.
The density r and Young’s modulus E are, respectively, 2400 kg/m3 and 30 000 MPa. The
load P of 100 kN travels at a speed v of 17 m/s across the beam. The problem was solved
by the present method using 12 terms and 480 equal time steps. The history curves for
deflections at the centres of the three spans are shown in Figure 9, and compared to results
from finite element methods [16] using 80 beam elements and 480 equal time steps. Very
good agreement is observed.

4.4.  4:  -       

      

Figure 10 shows a three-span continuous box girder bridge under a moving vehicle. The
density r and Young’s modulus E are, respectively, 2400 kg/m3 and 30 000 MPa. The
vehicle consists of four axles each of 450 kN and it travels at a speed v of 17 m/s across
the bridge. The problem was solved by the present method using 12 terms and 480 equal
time steps. The history curves for deflections at the centres of the three spans are shown
in Figure 11, and compared with results from the finite element method [16] using 120 beam
elements and 480 equal time steps. Note that t is the time elapsed since the first axle starts
from the left end and T is the time taken for all axles of the vehicle to travel over the bridge.
Very good agreement is again observed.

5. CONCLUSIONS

The modified beam vibration functions are developed for the analysis of multi-span
beams under moving loads. Based on Hamilton’s principle, the equation of motion in
matrix form has been formulated. The modified beam vibration functions satisfy the zero
deflection conditions at all the intermediate point supports as well as the boundary
conditions at the two ends of the beam. Programming for the whole process is very easy.
Numerical results are presented for both prismatic and non-prismatic beams under moving
loads of various velocities, and they agree well with the available results. Numerical
simulation shows that this method is versatile, accurate and efficient.
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APPENDIX A: NOTATION

EI(x) flexural rigidity
{kij , i, j=1, 2, . . . , n} generalized stiffness matrix
L overall length of beam
L� Lagrangian function of the beam
{xj , j=0, 1, 2, . . . , Q} abscissa of the jth point support or beam end
{mij , i, j=1, 2, . . . , n} generalized mass matrix
N number of loads in a load series
n number of assumed vibration modes
{Ps , s=1, 2, . . . , N} magnitudes of the load series
Q (Q−1) is the total number of intermediate point supports
{qi (t), i=1, 2, . . . , n} generalized co-ordinates of the beam
U� bending energy of the beam
u(t) unit step function
V� kinetic energy of the beam
v(t) velocity of the load series
W� work done by external loads
w(x, t) deflection of the beam
{Xi (x), i=1, 2, . . . , n} modified beam vibration functions
{X� i (x), i=1, 2, . . . , n} vibration modes of a hypothetical prismatic beam of length L with the

same end support conditions
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{X	 i (x), i=1, 2, . . . , n} augmenting cubic spline expressions
{xps (t), s=1, 2, . . . , N} abscissa of the sth load Ps at time t
rA(x) mass per unit length
{t1

s , s=1, 2, . . . , N} time when the load Ps just comes onto the beam
{t2

s , s=1, 2, . . . , N} time when the load Ps just leaves the beam

APPENDIX B: BOUNDARY CONDITIONS FOR THE DETERMINATION OF
AUGMENTING CUBIC SPLINE EXPRESSIONS

The augmenting cubic spline expressions are effectively fixed by the coefficients yij and uij .
For the determination of coefficients uij using equation (34), the coefficients yij are taken to
be −X� i (xj ) and aj , bj and Bij are given by equations (35–41) unless otherwise stated below.

B.1.       (x= x0)
(1) Simply supported end (Xi (x0)=X0i (x0)=0)

a0 =1, Bi0 =3
yi1 − yi0

l1
.

(2) Clamped end (Xi (x0)=X'i (x0)=0)

a0 =0, Bi0 =0.

(3) Free end (X0i (x0)=X1i (x0)=0)

a0 =−2, bi0 =0, b1 =
−2l2
l1 + l2

, Bi1 =
3l1

l1 + l2
yi2 − yi1

l2
.

Note that the coefficient yi0 does not appear in equation (34) and it is subsequently
determined by yi0 = yi1 − l1ui0.

B.2.       (x= xQ )
(1) Simply supported end (Xi (xQ )=X0i (xQ )=0)

bQ =1, BiQ =3
yiQ − yi(Q−1)

lQ
.

(2) Clamped end (Xi (xQ )=X'i (xQ )=0)

bQ =0, BiQ =0.

(3) Free end (X0i (xQ )=X1i (xQ )=0)

bQ =−2, BiQ =0, aQ−1 =
−2lQ−1

lQ−1 + lQ
, Bi(Q−1) =

3lQ
lQ−1 + lQ

yi(Q−1) − yi(Q−2)

lQ−1
.

Note that the coefficient yiQ does not appear in equation (34) and it is subsequently
determined by yiQ = yi(Q−1) + lQuiQ .


